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ABSTRACT 

We introduce the concept of a strict Z,-metric projector, based in the definition of 
strict approximation, to prove that for each matrix A of order mXn with coefficients 
in the field R of real numbers there exists a set of operators G: R” --) R” homogeneous 
and continuous, but not necessarily linear (strict generalized inverse) such that 
AGA=A and IIAGy-y II is minimized for all y, when the norm is the Z, norm. We 
investigate the properties of these operators and prove that there are two dis- 
tinguished operators A& and A,’ which are extensions of the generalized inverse 
introduced by Newman and Odell in the case of a strictly convex norm. 

INTRODUCTION 

Let R” x * denote the set of matrices of order m X n with coefficients in R. 
Let A ~~~~~ and let ]I. II be a norm in R”. 

From the results of R. Penrose [7] and C. R. Rao and S. K. Mitra [8] it 
follows that when I]. II is an Euclidean norm in R”, there exists GER”~~ 
such that 

(i) AGA=A, 
(ii) GAG=G, 
(iii) Gy is a II * II-best approximation of Ax= y for ah y. 

Moreover, if II. II is the usual Euclidean norm, there exists a unique matrix G, 
the Moore-Penrose inverse of A, which satisfies (i), (ii), (iii) and 

(iv) Gy has minimum norm among the II . II-best approximations of Ax= y, 
for all y. 
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But if the norm is the Z, norm 

IIXII=m~IXil, 
i 

it is known [4, Proposition 41 that there does not exist a matrix G satisfying 
(i), (ii), and (iii) for every matrix A. 

On the other hand, the results of Newman and Odell [6] show that if the 
norm II.11 isastrictlyconvexnorm(i.e., Ilx+yll=llxll+llyll withx#Oholds 
if and only if y =pclx for some ~20) then there exists an operator 

G: R” -R", 

homogeneous and continuous, but not necessarily linear, such that (i), (ii), and 
(iii) hold. All the 1, norms given by 

0) 

are strictly convex, but the 1, norm is not. So the following question arises: 
Does there exist an operator G : R” + R”, homogeneous and continuous, but 
not necessarily additive, such that (i), (ii), and (iii) hold for the 1, norm? 

It is the purpose of this paper to prove that the answer to this question is 
in the affirmative. We shall prove that there exists a set of such operators and 
that among them there is one that may be considered as an extension of the 
generalized inverse introduced by Newman and Odell in the case of a strictly 
convex norm. 

For our purpose it is not restrictive to assume that 

A=(B: BS) (2) 

where BE Rmx’ has rank r and S is a certain matrix. In fact, given A E Rmx” 
of rank T, there exists a permutation matrix P such that A=AP has the form 
(2). If there exists 

G: R” -R”, 

homogeneous and continuous, such that 

(a) AGA=A, 
(b) GAG=G, 
(c) Gy is an I,-best approximation of AX= y, 
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for all y, then the map 

PG:W’+R” 

5 

is homogeneous and continuous and satisfies (i), (ii), and (iii) when the norm 
is the 1, norm. 

1. BASIC DEFINITIONS AND KNOWN RESULTS 

Let A E R” Xn, where man, and suppose A is of rank r. Consider the 

system of linear equations 

Ax= y. (Ii) 

Let I]. )I be a norm in R”. A 11. II-best approximation of (Ii) is a vector x0 
in R” which satisfies the relation 

IlAx,-yII=infIIAx-yl). 
x 

Thus, Ax, is a I] . II-closest point to y in the range of A. Since the range of A is 
a closed set in R”, a II . II-best approximation of (Ii ) always exists. 

PROPOSITION 1. Suppose R” is endowed with the norm l,, p > 1, given by 

(1). Thf?n: 

(i) Zfrank A=n, (Ii) bus a unique $-best approximation. 
(ii) If rank A = r and A is given by (2), the set of $-best approximations of 

(Ii) is the linear manifold 

x0 +KerA 

where x,,=(xl ,..., xI,O ,..., 0)r is the transpose of (x1 ,..., xI,O ,..., 0) and 

(X 1,. . . , x,)~ is the unique $-best approximation of the system 

B;Q=y. 

Proof. Part (i) is a consequence of Lemma 2 in [l, p. 1291. Part (ii) 
follows from (i) and the definition of )I . II-best approximation. W 
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Let S={i,,..., i,} be a subset of E={1,2,...,m}. The system (Ii) is 
inconsistent over S if 

is inconsistent, where Ai represent the jth row of A. 
Let 

r(x)=Ax- y 

Suppose M is a linear manifold in R”. We say that b is an &-best approxima- 
tion or a Chebyshev approximation of Ax= y on S with respect to M if 

The deviation of Ax= y on S with respect to M is given by 

When M is fixed, we call p(S) and b simply the deviation of Ax= y on S and 
the best approximation of Ax= y on S, respectively. 

If W(S) is the set of all best approximations of AX= y on S, we define the 
characteristic set of Ax= y on S as the set 

PROPOSITION 2 [3, Lemma 1; 2, Theorems 4, 5, 71. 

(i) The set W(S) is nonempty. 
(ii) The set C(S) is nunempty. 

The next proposition follows from the properties of W(S) and of convex 
sets. 
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PROPOSITION 3. The set W(S) is convex. 

COROLLARY 1. Suppose the system Ax= y is inconsistent over S. Then if 
iEC(S), 

fm all b, b, in W(S). 

Proof Suppose that i EC(S) and that there are b, b, E W(S) such that 

then q(b)= -rJb,) and 

Now, that W(S) is convex implies that ib+ 4 b, E W(S). Therefore, since 
Ax= y is inconsistent over S, we have that 

which contradicts the relation q( i b + 1 b,) =O and proves the corollary. n 

The concept of strict approximation, due to J. R. Rice, has been for- 
mulated in a constructive manner by him [9] and by J. Descloux [3]. They 
consider the approximation of a real function by a set of given real functions 

f I,...,.& d f d e ine on a finite set. We shah follow their ideas to construct the 
strict approximation of an inconsistent system of the form (Ii). 

Step 1. Find the Z,-best approximations of (Ii) on E with respect to R”. 
Let pi, W,, and C, b&e deviation, the set of Z,-best approximations, and 
the characteristic set, respectively, of (Ii) on E. Then 

and the vectors of W, satisfy 

where, by Corokary 1, either E(o) = 1, or else E((Y) = - 1 for a.lI x E W,. 
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Suppose 

Let 

C1={al,...,at}. 

Then, the set of solutions of (ai) is a linear manifold 

Mr =x. +Ker(‘)A, 

where xa E W,. If sr =rank(‘)A, then dim M, =n-sl. 

Step 2. Find the Z,-best approximations of (Ir) on ES, with respect to 
Mr. We associate with this problem the real number 

P2= .@k (m~lTi(X)I) (i~E\c,), 
I 

the set W, of I,-best approximations, and the characteristic set C, of (I,) on 
ES,, with respect to Mr. 

We define the manifold M, as the set of all vectors satisfying 

M2: 
1 

r,(x)=++13 (YECi, 

~~(-4=4/3)P2~ PEC2. 

Note that C,CE\C,, so C,flC,=0. If C2={&,...,&} and 

(a,) 

b2) 

then the solution manifold of the system is 

M, =x1 +Kerc2)A, 
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where xi E W,. Suppose that the rank of c2)A is equal to si +s,, so that 

dimM,=n-s,-s,. 

If p2 =O, then r&x)=0, where i runs over EC,, by the definition of p2. In 
that case C, = ES,. All the m rows of A are involved in the definition of M,. 
Therefore the system is of rank n, and in consequence has a unique solution. 
If p2 #O, n--s1 -s2 >O, and C, # E\C,, the process is continued until we 
reach the Kth step. Find the &,-best approximations of (Ii) on ES,\ . . . \C,_ 1 
with respect to MK_ 1. 

Define pk, W,, C,, and the manifold M, determined by the set of 
solutions of 

(YEC1’ w 

PEC2, b2) 

TECK, (aK > 

wheredimM,=n-s,--s,- ...--sK= 0. This must happen eventually, be- 
cause we are using more rows of A at each step and the m rows are of rank n. 
The manifold MK consists of precisely one vector x*, which is the common 
solution of the systems (a,), (a,), . . . ,(a,). 

We define x* to be the strict approximution of Ax = y. 

REMARK 1. The strict approximation is the only best approximation of 
Ax = y that is also a best approximation of each of the subsystems 

(A”J)=Y,, iEEK,\...\Ci, i=l,..., K. 

The deviations pi,. . . , pK of this system satisfy the relation pi > . . . >pK (for 
proof refer to [3]). 

When rank A =T and A is given by (2), we define the strict approxima- 
tions of A as the linear manifold x*+kerA, where x*=(x1 ,..., x1,0 ,..., O)r, 
and (xi,..., x,)r is the unique strict approximation of the system 

B2=y. 

THEOREM 1. Let AER”‘~” be of rank n. For each p=2,3,..., let xP be 
the unique &-best approximation and let x* be the strict approximation of the 
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inconsistent system Ax= y. Then 

lim xP=x*. 
P-m 

For proof refer to [3]. 
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COROLLARY 2. Let AER~~“, let x,, be any I,-best approximation of a 
system of equations of the form (Ii), and let x* be any strict approximution of 

(11). Then 

lim Ax, =Ax*. 
P-m 

Proof. If rank A =n, the corollary follows directly from Theorem 1. 
Suppose that rank A= r and A = (B : SS), where B E R” x’ has rank r. Then if 

~,=(x,,,,...,x,,,)~ and f*=(x~,...~x,)~ 

are the unique Z,-best approximation and the strict approximation of 

Bx=y 

respectively, then 

2p =(x 1 p,...,x, p, , o,...,oy 
and 

35*=(x1 )..., x,,o,o )...) 0)’ 

are an $-best approximation and a strict approximation of (Ii), respectively. 
Moreover, the sets of $,-best approximations and strict approximations of (Ii) 
are, respectively 

4, +KerA (3) 

and 

35* +KerA. (4) 
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Now, by Theorem 1, 

lim f,=f*. 
P-m 

Therefore 

lim Ltp=**, 
P-m 

which implies 

lim A&, =AF. 
P-m 

This relation, together with (3) and (4), implies our corollary. 

11 

n 

2. THE STRICT Z,-METRIC PROJECTOR 

Let L be a subspace of R*, and $J a norm in R”. The +metric projector 
on L is the point to set-valued mapping 

whose image is contained in L and which associates with each y in R” the set 
of +closest points to y in L. Thus 

[l, p. 1571. 
When $I is a strictly convex norm, PL,+ is an ordinary function which 

assigns to each YE R” its unique +-closest point in L. 

THEOREM 2. Zf $S is a strictly convex rwrm, then for any subspace L in 
R” and any point y in R” we have that 

(a) P&Y)=Y ifandonly ifyEL 
(b) p&#.=pL,*p' 
Cc) PL,@Y)=AP,,,(Y)? 
(4 PL,+(x+y)=x+PL,+(y) for all xEL, 
b-4 h,+ is continuous on R”. 
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For proof refer to [l, p. 1301. 

PROPOSITION 4. If +=Q,, ~‘2, then PL,+ is uniformly continuous on R”. 

For proof refer to [5, p. 2361. 

PROPOSITION 5. If L is a subspace of R” of dimension r, then there exists 
a matrix A, ER”‘~’ of rank r such that y E R” belongs to L if and only if the 
system 

ALx= y (12) 

is consistent. 

Proof. Let I,,..., 1, be a basis for L. If er, es,. . . , e,,, is the canonical basis 
of R”, 

??I 
Zi = z aiiei, i=l ,*a*, r. 

j=l 

Let A, be 

then A, ER”‘~‘, rank A, =r. and it is easy to prove that (I,) is consistent if 
and only if y EL. n 

The matrix A, is called a parametric representation of L. 

REMARK 2. If A, and B, are two parametric representations of L, then 

B, =A,.P, 

where P is a nonsingular matrix of order r. 

REMARK 3. Let + be the 1, norm in R”, and let L be a subspace of R”. 
If yE R”\ L, then ALx* is in PL, ,(y), where x* is the unique strict 
approximation of the inconsistent system A,x = y. 

REMARK 4. Let AER”‘~‘, and let P be a nonsingular matrix of order r. 
Then x is an 1,-best approximation of Ax = y if and only if P -lx is an &,-best 
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approximation of AZ%= y. Hence, by the definition of strict approximation, x * 
is the strict approximation of Ax= y if and only if P-lx* is the strict 
approximation of APx = y. 

Assuming that R” is endowed with the I, norm, we use Remarks 2,3, and 
4 to define for each subspace L of R” a function 

FL(Y)= 
{ 
y( x* 

YJEL 

L ) ya. 

It should be noted that the image of FL lies in L. We call FL the strict 
Z,-metric projector. 

In the following propositions we shall develop some properties of FL. 

PROPOSITION 6. Zf R(A) is the range of A, then 

(i) &,,,A =A. 

(ii) Ify@WA), 

PII =Ax* 

for any stricJ appro+ation x* of Ax= y. 
(iii) AGP,,,, =PRCAj for all generalized inverses G of A. 

Proof. (i): By the definition of FstA) we have that P,,,,A=A. 
(ii): If rank A = n, we may suppose that ARCA) =A. Therefore, if y 6!R( A) 

we have that FnCA)(y)=Ax*, where x* is the unique strict approximation of 
Ax= y. Next suppose that rank A < n and that A is given by (2), that is 

A=@: BS) 

where B ER”‘~~ has rank r. Then we may suppose that A,(,, =R. 
Therefore, if y@R(A), we have that P,,.,(y)=B?* where X*= 

(x i,. , . , x,)r is the unique strict approximation of ZS=y. It is easy to show 
that if 

35*=(x1 ,..., x,,o ,..., oy, 
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then 

Ri* =Af* =Ax* 

DELIA FLORES DE CHELA 

for any strict approximation x* of Ax= y. Hence, if y @R(A), 

for any strict approximation x* of Ax= y, which proves (ii). 
(iii): If PER, 

AGP’R(*)( y) =AGAx* 

=A?‘ 

=&+4)(Y)’ 

If y-(A), 

P,(*,(Y)=Aw 

for some w ER”. Hence, 

AG&CAj( y) =AGAw =Aw 

=&,*,<Y>. 

Therefore, for all generalized inverses G of A, we have 

PROPOSITION 7. Zf PL, p is the metric projector associated with a subspace 
L in R” and the 1, norm, p>l, in R”, then 

pointwise. 
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Proof. Let ye R”\ L. Let yp be the $,-closest point to y in L, and x,, be 
the $-best approximation of the inconsistent system 

Then 

ALx= y. 

pL,p(Y)=ALXp =yP’ 

Hence, 

lim P,,,(y)= lim A,x, 
P-m p-00 

by Theorem 1. Thus 

h P~,,(y)=pZ(y), Y4L. 
p-00 

If yEL, then 

pL,,(Y)=P,(Y)=Y forallp. 

Therefore 

pyi,p(Y)=P,(Y) forall y, 

which proves the proposition. n 

The following result is a consequence of Theorem 2 and Proposition 7. 

PROPOSITION 8. For any subs-pace L of R” and y E R” we have that: 

(a) pZ(y)=y if and only if yEL. 
(b) g=pz. 
(c) pL(Xy)=ApZ(y) for all XER. 
(d) PL(x+ y)=x+P,(y) for all XEL. 

PROPOSITION 9. For any subspace L of R”, &, is unifmly continuous. 
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Proof We have that FL =lim p-o3 PL, p pointwise. Hence, given E>O and 
y,, ys ER”, there exists N such that p>N implies that 

Let p, >N. Since PL,pO is uniformly continuous, by Proposition 4, there 
exists 8~0 such that 

Now, 

This last relation together with (5) and (6) implies that, given E>O, there 
exists 6>0 such that 

IIy,-!&II,<6 = llpz(y~)--pz(y,)II~E. 

Thus, & is uniformly continuous. 

3. THE STRICT GENERALIZED INVERSE 

Let A ~~~~~~ A strict generalized inverse (s.g.i.) of A is a homogeneous 
and continuous operator X from R” to R” such that: 

(i) AXA=A. 
(ii) XAX=X. 
(iii) X(y) is a strict approximation of a system of equations of the form 

(II), for every yBR(A). 

PROPOSITION 10. Every s.g.i. X of A satisfies the equation 

AX=&,,,. 
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Proof. If y@R(A), then X(y) is a st@t approximation of (II), by (iii). 
Therefore, according to the definition of PRtAJ, 

AX(Y)=P,~,,(Y). (7) 

If yf!R(A), then y=Az for some zER”. Hence 

and 

AX( y ) = AXAz 

=Az, 

by (i). So 

A~(Y)=&~,,(Y). 

Combining this with (7), we obtain that 

AX(Y)=&(A)(Y) 

for all PER”. Thus, 

AX=&,,,. 

THEOREM 3. Let S be the set of homogeneous and continuous operators 
G j&n R” to R” such that AGA = A. Then 

{GP,(,, foraZZGES} 

is the set of strict generalized inverses of A. 

Proof. Let G ES and 

- 
X= GP,,,,. 
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It is clear that 

X:R”+R” 

DELIA FLORES DE CHELA 

is homogeneous and continuous. Next, 

AXA =A( G&&A 

=AG( P,(A#) 
=AGA, 

by (i) of Proposition 6, which implies that AXA = A. And 

XAX= (G&I& A( G&,,) 

=G( P,,,,A)G&,,, 

= GAG&,,, 

= G( AGP,,,, 1 

=GPR(*)’ 

by (iii) of Proposition 6. Hence, 

XAX=X. 

Finally, if y@R(A), 

=GAx* 

for some strict approximation x* of Ax= y. Hence, 

AX(y)=AGAx* 

=Ax*. 
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Thus, 

x(y)=x*+n, 

19 

z E Ker A. Hence X( y ) is a strict approximatio_n of Ax= y for every y @R_(A). 
Conversely, if X is a s.g.i. of A, then AX=P,,,,. Therefore XAX=XP,,,,, 

which implies, by (ii) of the definition of s.g.i., that XZXF~,,,,. n 

COROLLARY 4. lf rank A=n, there exists a unique strict generalized 
inverse Af, of A, given by 

where A f is the Moore-Penrose inverse of A. 

Proof. From Theorem 3 it is clear that 

is a s.g.i. of A. 
Now, if X and Y are s.g.i. of A, then 

AX=AY=P,,,,, 

by Proposition 10. But since A has rank n, the last relation implies 

X=Y, 

which proves our corollary. 

4. A DISTINGUISHED STRICT GENERALIZED INVERSE 

w 

Suppose that A ER”~” has rank less than n. Then the strict approxima- 
tion of Ax= y is not unique. But if we consider a strictly convex norm p or the 
2, norm in II”, we may distinguish a strict approximation of 

Ax=y. (Ii) 
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In fact, the linear manifold 
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H= {A+FRcAj(Y)+z: zEKerA) 

is the set of strict approximations of (Ii). Moreover, since 

we have that 

is the unique element of H of minimum p-norm. - . . . . 
SrmrIarly, by the defimtron of PKerA we have that 

is a strict approximation of (I,) of minimum Z,-norm. 

THEOREM 4. The operators 

Ask = (~-~K~~A,~)A+&~~~ 

and 

A,’ = ( Z-&,_rA)A+Z&j 

are s.g.i. of A such that if y is not in the range of A, then Ai,‘Jy) is the 
unique strict approximution of (I r ) of minimum /l-norm and A,‘(y) is a strict 
approximation of (11) of minimum I,-non. When y is in the range of A, 
A&(y) i.s the unique solution of (11) f o minimum /korm and A;‘(y) is a 
solution of (11) of minimum I,-fwrm. 

Proof. This follows immediately from the definitions of As,‘~ and A,‘. 
n 

REMARK 5. Since, by Remark 1, the strict approximations of Ax= y may 
be considered as the best among its I,-best approximations, the result of 
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Theorem 4 says that Aa,‘, and A,’ are the natural extensions of the operator 
A,& p-q generalized inverse of Newman and Odell [6], when AE Rmx”, 
(Y = 1, and j? is an essentially strictly convex norm or the I, norm. 

Most of the results of this paper are part of a Ph.D. dissertation submitted 
in July 1978 to the University of Sussex, Falmer, England. I thank Professor 
Walter Ledermann, my supervisor, for his guidance and encouragement. 
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